木曽川右岸流域下水道温室効果ガス削減計画

1 背景と本計画の位置づけ

■背黒

国は2050年までに温室効果ガスの排出を全体としてゼロにするカーボン ニュートラルを目指すことを宣言し、本県においても2050年の「脱炭素社会ぎ ふ」の実現に向け、「岐阜県温室効果ガス排出抑制率先計画」を策定し、温 室効果ガス削減の取組を推進している。

	国	岐阜県			
2020年度	2050年カーボンニュートラル 宣言	2050年「脱炭素社会ぎふ」の実現を表明 →第6次岐阜県環境基本計画 に明記			
2021年度	「地球温暖化対策計画」改定(2030年度目標: 2013年度比46%削減)	「岐阜県温室効果ガス排出抑制率先実行計画」策定 (2030年度目標:2013年度 比70%削減)			

■本計画の位置づけ

「岐阜県温室効果ガス排出抑制率先実行計画」の目標達成に向け、 流域下水道事業における具体的な取組を計画する。

> 岐阜県温室効果ガス排出抑制率先実行計画 (地方公共団体実行計画(事務事業編))

> > 流域下水道事業における取組の具体化

木曽川右岸流域下水道温室効果ガス削減計画

2 木曽川右岸流域下水道の温室効果ガス排出量

県施設全体排出量のうち、木曽川右岸流域下水道は約1割(2013年度) を占める。

施設	2013年度(基準年度) 排出量(t-co2) (割合)	2021年度 排出量(t-co2) (割合)			
県施設全体	86, 158	75, 435			
木曽川右岸流域下水道	10, 200 (11. 8%)	8, 191 (10. 9%)			

※対象施設:処理場(各務原浄化センター)、ポンプ場4箇所等

3 基準年度・目標年度・計画期間・削減目標

基準年度:2013年度 目標年度:2030年度

計画期間:2023年度~2030年度までの8年間

削減目標:2030年度までに温室効果ガス70%削減(2013年度比)

4 基本方針及び目標達成に向けた取組

削減目標の実現に向け、基本方針として以下の3つを推進

基本方針: ① 省エネの推進 ② 再エネの導入 ③再エネの調達

設備更新時における高効率機器の導入

・水処理施設及び汚泥処理施設の設備更新に 合わせて、高効率機器を導入 【汚水ポンプ設備、反応タンク設備(散気装置、 攪拌装置)、汚泥脱水機、遠心濃縮機】

運転方法の改善

- ・水処理施設の散気装置の風量適正化
- ・水中攪拌機の運転方法の見直し 【反応タンク設備】

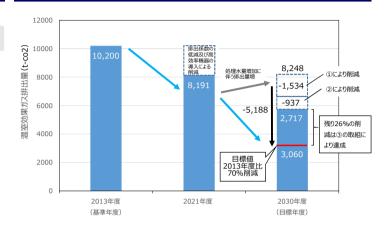
LEDの導入

・既設照明をLED照明に更新 【管理棟、場内外灯、スポーツ施設ナイター照明】

再エネの

ത

太陽光発電設備の設置


・各務原浄化センターの空き用地のうち、土地利用 の予定がない場所に太陽光発電設備を設置

)再エネの調達

再エネ由来電力 (RE100等) の調達

・使用電力を再生可能エネルギー由来の電力に切替 ※調達時期については社会情勢を踏まえ検討

5 温室効果ガスの削減予測

6 温室効果ガス排出削減の方針

削減目標の実現に向けて、3つの基本方針 ①省エネの推進、②再エネの導入、③ 再エネの調達に取組み、温室効果ガス削減を推進

取組なしの場合と比較し、2030年度時点で5,188(t-co2)の温室効果ガスを削減

項目	取組内容	削減量(t-co2)		
①省エネの推進	高効率機器の導入 運転方法の改善 LED照明の導入	1, 534		
②再エネの導入	太陽光発電の設置	937		

<u>①・②により、43%削減</u> (2013年度比)

項目	取組内容	削減量(t-co2)		
③再エネの調達	再エネ由来電力(RE100等) の調達	2, 717		

2013年度の温室効果ガス排出量10,200(t-co2)を2030年度 時点で3,060(t-co2)に削減(70%削減)

木曽川右岸流域下水道温室効果ガス削減計画 年次計画

		項目	R5(2023) 年度	R6(2024) 年度	R7 (2025) 年度	R8 (2026) 年度	R9(2027) 年度	R10(2028) 年度	R11(2029) 年度	R12(2030) 年度
省エネの推進		汚水ポンプの機種変更 (高効率電動機に更新)		長良川系	ポンプNo. 3		木曽川系	系ポンプNo. 2	•	
	高効率機器の導入	(1377)	長良川系オ	ポンプNo.5		長良川系	ポンプNo. 4			
		散気装置の機種変更 (超微細気泡散気装置に更新)		反応タンク9, 10池		反応タン	ンク13, 14池			
		撹拌装置の機種変更(駆動部槽上式に更新)		反応タ	応タンク9, 10池 反応タンク13, 14		ノク13, 14池	反応タン	ノク15, 16池	•
		汚泥脱水機の機種変更 (ハイプリット型スクリュープレス脱水機に更新)		污泥脱	水機No. 2−2		_		汚泥脱フ	k機No. 3−1
					汚泥脱力	k機No. 2−3				
		遠心濃縮機の機種変更(ベルト濃縮機に更新)					遠心濃縮機No. 1-2		遠心濃縮機No. 1-1	
	運転方法	散気装置の風量適正化	反応タンク15,16況	<u>h</u>			反応タ:	ンク18, 19池	反応夕	ンク17池
	一次 の 改善	水中攪拌機の運転方法の見直し	反応タンク20 [~] 22況	<u>h</u>						
	L E D	LED照明に更新			管理本館・場内外	灯	場外外灯			
	の 導 入	= = = \(\times \(\tau_1 \) = \(\tau_2 \)			野球均	易等照明				
再エネの	太陽光発	太陽光発電設備の設置					汚泥濃縮槽東側		スホ゜ーツ	広場東側
の 導 入	光発電導入								4系水	処理北側
		祖宗林田ゼラ戦諸帝(2012年帝世)	23%	23%	27%	27%	31%	34%	35%	43%
温室効果ガス削減率(2013年度比)									※ (70%)	